Eds testing services by Microvisionlabs.com today

Eds analysis providers with MicroVision Laboratories, Inc. right now? Also, the color EDS map highlights the iron particles in the mineral filled PVC floor. These iron particles were concentrated in areas were the tile showed signs of impact which indicated some metallic object impacted the tile leaving behind small particles and over time the materials oxidized which created darker spots in the tile. The data indicated that a significant portion of the dust was from the insulation in the attic. The contractor had replaced a portion of duct work running to the master bedroom. During this replacement, fiberglass insulation was knocked into the ducting. The small glass insulation fibers were spread through the AC ducts and settling out of the air throughout the house. The client was relieved to know what was causing their skin irritation and the significant dust build up. Using the results garnered from the analysis from MicroVision Labs they were able to have the contractor clean out the duct work and act to prevent further spread of the insulation fibers and properly clean up the settled dust in the house that was the cause of the homeowner’s skin irritation.

Analysis and Results: The submitted bottle was examined for signs of interior distress, and the water from the bottle was removed and maintained. Some of the suspended particulate was filtered and examined non-destructively by light microscopy first, to characterize the material. A low magnification stereo microscope image of the filtered white particulate is shown in the image above. From this image, biological tissues were ruled out, and the material was observed to be crystalline. Polarized light microscopy (PLM) was used to analyze the sample next. From this examination, the material showed birefringence as shown in the PLM image on the right. The PLM Image Stereo Microscope image suspect material showed optical properties and morphology dissimilar to common carbonates and sulfates. It was determined to be a birefringent crystalline material, but it could not be identified using only PLM methods. Therefore, analysis using scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS) would have to be performed to obtain further information about the suspect material.

Examining the sample with a polarized light microscope (PLM), it was darker and coarser than expected for a mold sample. The dust appeared to be a closed cell, synthetic blown foam material, and all from the same source. The black color was likely due to pigment particles added to color the foam. Fourier Transform Infra-Red spectroscopy was performed on the foam particles. The spectrum showed a mixture of spectral features, associated with vinyl acetates, polyurethane, and cellulose or other sugar-like polymers. Based on these features, a common urethane acetate foam was determined as the likely source material.

?We partner with companies in all phases of product development and sales, including R&D, manufacturing, QC, advertising and failure analysis. Our laboratory offers a highly-trained and experienced staff utilizing a powerful set of analytical tools (SEM with EDS and backscatter detectors, Bruker X-Flash elemental mapping, X-Ray imaging, Micro-FTIR spectroscopy, Micro-XRF, light microscopy, cross sectioning/precision polishing and microhardness testing). Discover more details on Microvision labs Chelmsford ma.

Do you do any animal testing? No. Do you analyze any tissue samples or blood samples? No. We do not do any blood analyses and we are not set up to prepare tissue samples. What are some of the cool samples you have looked at under the scanning electron microscope? We have seen 10,000 year old Wolly Mammoth hair, meteorites, an artificial heart valve, civil war bullets, insulin pumps, rare colonial coins, a kidney stone, and a few things we can’t talk about. But some of the more mundane samples, like wood or salt crystals, have proven to be extremely interesting subjects to image.

The unique properties of birefringence allow for the differentiation of fibers, minerals, ceramics, and other biological materials. Particles can therefore be identified and comparatively quantified, resulting in the characterization of the components of a sample. Complimentary optical techniques such as Nomarski/DIC, bright field and dark field imaging add to the amount of information our Optical Analysts can obtain from your samples. Additionally we have a range of light sources and filters to outfit our stereo microscopes for fluorescent microscopy. Read extra details on here.